
COM506	Professional	Web	Services	Development	
	

Practical	A4:	XML	Manipulation	using	PHP	
	
	
	
	

Aims
• To	introduce	the	PHP	DOMDocument	object	for	manipulation	of	XML	
data	

• To	demonstrate	the	retrieval	of	data	values	from	DOMDocument	
elements	

• To	demonstrate	the	procedure	for	updating	values	within	a	
DOMDocument	object	

• To	demonstrate	the	addition	of	elements	to	a	DOMDoument	object	
• To	demonstrate	the	removal	of	elements	from		DOMDocument	object	

	
	
	
	
	
	
	

Contents
A4.1		PHP	Support	for	XML	Data	..	2	

A4.2		Editing		element	values	..	6	

A4.3		Adding	new	elements	...	8	
A4.4		Removing	XML	elements	...	10	

A4.5	Further	Information	..	12	
	
	
	
	
	
	
	
	
	

A4:	XML	Manipulation	using	PHP		 2	

A4.1 PHP Support for XML Data
	
Note:	Since	version	5,	PHP	has	included	support	for	the	SimpleXML	library	that	
provides	a	collection	of	methods	supporting	XML	manipulation.		We	will	not	use	it	here,	
concentrating	instead	on	the	underlying	operations	–	but	you	are	encouraged	to	explore	
it	once	you	are	comfortable	with	the	techniques	demonstrated	here.	
	
In	the	previous	practical,	we	explored	the	use	of	JavaScript	and	the	XML	DOM	to	parse	
and	navigate	XML	data.		Although	we	are	able	to	build	useful	applications	with	dynamic	
interfaces,	their	functionality	suffers	from	JavaScript’s	inability	to	write	to	the	local	file	
store	–	meaning	that	we	could	not	make	permanent	changes	to	the	XML	file.		In	this	
practical,	we	will	see	how	storing	the	XML	file	on	the	server	and	interacting	with	it	
through	PHP	can	overcome	these	limitations.		Consider	the	following	XML	file	
(books.xml)	used	to	maintain	a	catalogue	of	books.	
	

<?xml version="1.0"?>
<catalogue>
 <nextID>103</nextID>
 <books>
 <book id="102">
 <title>Another New Book</title>
 <author>A. N. Other</author>
 </book>
 <book id="101">
 <title>Easy PHP</title>
 <author>A. B. Cee</author>
 </book>
 <book id="100">
 <title>My New Book</title>
 <author>A. N. Author</author>
 </book>
 </books>
</catalogue>
	

	
This	data	set	has	a	structure	such	as	that	illustrated	in	Figure	A4.1.		Each	<book>	
element	has	an	ID	attribute,	and	is	described	by	an	<author>	and	a	<title>.		In	
addition,	the	file	also	maintains	an	element	<nextID>	that	is	used	when	adding	a	new	
book	to	the	collection.		We	will	see	how	the	<nextID>	element	is	used	later.	
	

A4:	XML	Manipulation	using	PHP		 3	

	
	

Figure	A4.1.		Structure	of	books.xml	
	
	

Note	on	validation	
From	this	point	forward	we	will	assume	that	our	XML	is	valid	and	that	a	DTD	or	Schema	
has	been	provided	to	enforce	this.		
	
	
XML	processing	in	PHP	is	supported	by	the	DOMDocument	class,	which	represents	an	
entire	XML	document	and	provides	a	collection	of	methods	and	attributes	that	allow	us	
to	manipulate	the	content.		As	a	first	example,	examine	countBooks.php,	which	opens	an	
XML	file,	reads	it	into	a	DOMDocument	object,	and	reports	the	number	of	<book>	
elements	contained	within	the	file.	
	

<?php
$file = "books.xml";
$fp = fopen($file, "rb") or die("Error - cannot open XML file");
$str = fread($fp, filesize($file));

$xml = new DOMDocument();
$xml->formatOutput = true;
$xml->preserveWhiteSpace = false;
$xml->loadXML($str) or die("Error – cannot load XML data");

$root = $xml->documentElement;
$books = $root->childNodes->item(1);

$allBooks=$books->childNodes;
echo "The database contains details of ".
 $allBooks->length . " books";
?>

	
	
Do	it	now!	
Load	countBooks.php	into	a	browser	(remember	that	PHP	files	must	be	run	from	the	
server)	and	verify	that	it	behaves	as	expected.	

Catalogue

NextID Books

Book Book

Title Author Title Author

A4:	XML	Manipulation	using	PHP		 4	

	
Figure	A4.2.		Counting	the	number	of	child	elements	

	
The	application	countBooks.php	is	organised	as	4	distinct	sections,	indicated	by	the	
spacing	in	the	code	above.		We	will	dissect	each	of	these	in	turn.	
	
First,	we	open	the	XML	file	and	read	its	contents	into	a	string	variable	$str.		Note	the	
file	mode	“rb”	in	the	call	to	the	fopen()	function.		This	identifies	that	we	want	to	open	
the	file	for	reading	(r)	and	that	the	file	should	be	opened	in	binary	mode	(b).		It	is	not	
essential	to	specify	binary	mode,	but	it	is	good	practice	to	ensure	that	the	application	
can	be	easily	deployed	on	different	server	architectures.	
	
Next,	we	create	a	new	instance	of	the	DOMDocument object	and	force	a	neatly	
formatted,	indented	presentation	by	setting	the	formatOutput	and	
preserveWhiteSpace	attributes.		Once	created,	we	populate	the	DOMDocument object	
with	the	string	read	from	the	file.	
	
The	root	node	of	the	XML	is	obtained	by	accessing	the	documentElement	property	of	
the	DOMDocument	object.		As	the	container	for	the	<book>	items	is	the	second	child	
node	of	the	root,	we	create	a	variable	$books	that	points	to	the	root	of	the	tree	of	
<book>	elements.	
	
Finally,	we	use	the	childNodes	property	to	obtain	the	collection	of	<book>	elements	in	
the	structure	($allBooks)	and	obtain	the	number	of	books	by	$allBooks->length.	
	
	
Try	it	now!	
Add	a	new	<book>	element	to	the	books.xml	data	file.		Use	the	current	value	of	the	
nextID	field	as	the	id	attribute	for	the	new	book,	and	increment	the	<nextID>.		
Refresh	countBooks.php	in	the	browser	to	verify	the	new	book	has	been	counted.	
	
	
We	will	introduce	some	further	XML	processing	methods	by	a	second	example	using	the	
books.xml	database	that	returns	the	titles	of	any	books	by	a	given	author.	
	
	
	
	

A4:	XML	Manipulation	using	PHP		 5	

Do	it	now!	
Load	authorSearch.php	into	a	browser	and	provide	the	name	of	any	author	in	the	
database	in	the	text	box.		Verify	that	output	such	as	that	illustrated	in	Figure	A4.3	is	
generated.	
	
	

	

		 	
Figure	A4.3.	Search	by	author	

	
	
The	fragment	of	code	that	performs	the	search	function	is	presented	below.	
	
	

 $booksFound=0;
 foreach($books->childNodes as $book) {
 $bookTitleNode=$book->childNodes->item(0);
 $bookAuthorNode=$book->childNodes->item(1);
 if ($bookAuthorNode->nodeValue==$_POST["author"]) {
 echo $bookTitleNode->nodeValue."
";
 $booksFound++;
 }
 }
 if ($booksFound==0) echo "No matching authors found";

	
	
As	before,	the	variable	$books	is	a	pointer	to	the	root	node	of	the	books	tree.		Using	the	
foreach	loop,	we	assign	the	$book	variable	to	each	of	the	<book>	elements	in	turn,	
extracting	the	<title>	and	<author>	elements	into	the	$bookTitleNode	and	
$bookAuthorNode	variables.		Using	the	nodeValue	property,	we	extract	the	value	of	
the	<author>	element	and	compare	it	to	the	value	POSTed	in	the	form.		If	the	values	
match,	we	display	the	corresponding	value	of	the	<title>	element.	
	
	
Try	it	now!	
Examine	the	XML	file	senators.xml,	which	contains	a	list	of	all	current	members	of	the	
United	States	Senate.	(Source:	
http://www.senate.gov/general/contact_information/senators_cfm.xml)	
	
Write	the	application	searchSenate.php,	which	prompts	the	user	for	a	state	code	(e.g.	TX	
for	Texas,	FL	for	Florida,	etc.)	and	returns	details	of	all	representatives	for	that	state.	

A4:	XML	Manipulation	using	PHP		 6	

A4.2 Editing element values
	
The	DOMDocument	object	provides	a	number	of	element	manipulations	methods	that	
enable	us	to	modify	the	values	stored	in	the	XML	data,	and	also	to	write	the	revised	XML	
back	to	the	text	file.	
	
This	is	illustrated	in	the	application	editBook.php,	which	prompts	the	user	for	an	id	
value,	an	author	and	a	title.		When	the	form	is	submitted,	the	application	locates	the	
book	with	the	matching	<id>	attribute,	and	updates	the	<title>	and	<author>	
elements	with	the	new	values	provided.	
	
	
Do	it	now!	
Load	editBook.php	into	a	browser	and	provide	new	author	and	title	details	for	one	of	the	
<book>	elements.		Examine	the	contents	of	books.xml	before	and	after	you	run	the	
application	and	verify	that	the	XML	data	has	been	modified	as	intended.	
	
	
Remember!	
You	may	need	to	change	permissions	on	the	XML	file	to	permit	it	to	be	updated.		You	
should	set	the	document	permissions	to	enable	the	file	to	be	both	read	and	written	by	
all	users	and	processes.	

	
	

	
Figure	A4.4.	Edit	values	

	
	
In	order	to	update	a	node,	we	first	create	a	new	node	with	the	desired	values.		Once	
available,	we	then	use	the	DOMDocument	replaceNode()	method	to	replace	a	named	
node	with	the	newly	created	one.	
	
	
	
	
	
	

A4:	XML	Manipulation	using	PHP		 7	

$id=$_POST["id"];
$newTitle=$_POST["title"];
$newAuthor=$_POST["author"];

// find node and make the change
foreach($books->childNodes as $book) {

 if ($book->getAttribute("id")==$id) {

 $titleNode=$xml->createElement("title");
 $titleTextNode=$xml->createTextNode("$newTitle");
 $titleNode->appendChild($titleTextNode);

 $authorNode=$xml->createElement("author");
 $authorTextNode=$xml->createTextNode("$newAuthor");
 $authorNode->appendChild($authorTextNode);

 $newBookNode=$xml->createElement("book");
 $newBookNode->setAttribute("id",$id);
 $newBookNode->appendChild($titleNode);
 $newBookNode->appendChild($authorNode);

 $books->replaceChild($newBookNode,$book);
 }
}

echo "<xmp>NEW:\n". $xml->saveXML() ."</xmp>";

$xml->save("books.xml");

	
	
The	process	can	be	summarised	by	the	following	steps.	
	

1. Find	the	node	to	be	replaced	by	testing	the	id	attribute	of	each	<book>	element	
in	turn.	

2. Use	the	createElement()	method	to	create	a	new	<title>	node	and	the	
createTextElement()	method	to	create	the	text	value	for	the	<title>.		
Connect	the	text	value	to	the	<title>	element	by	the	appendChild()	method.	

3. Repeat	the	process	to	create	a	new	<author> element	with	its	associated	text	
value	

4. Create	a	new	<book>	element	with	attribute	id.			Now	connect	the	previously	
created	<title>	and	<author>	elements	as	children	of	this	new	<book>.	

5. Finally,	replace	the	“old”	<book>	element	with	the	newly	created	<book>	
	
Note	also	the	use	of	the	saveXML()	and	save()	methods	to	display	and	store	the	XML	
data.		The	saveXML()	method	returns	a	text	string	representation	of	the	XML	contents,	
which	we	display	in	the	browser	for	debugging	purposes.		The	save()	method	stores	
the	XML	data	back	in	the	named	file.	
	

A4:	XML	Manipulation	using	PHP		 8	

Note	
In	this	example	we	display	the	‘before’	and	‘after’	state	of	the	XML	by	enclosing	it	within	
HTML		<xmp>	…	</xmp>	tags.		This	is	a	deprecated	tag	(i.e.	no	longer	part	of	the	HTML	
standard)	that	enabled	the	display	of	unparsed	text	(i.e.	text	could	contain	embedded	
tags	that	were	not	parsed	by	the	browser).		Most	browsers	still	support	<xmp>,	so	we	
use	it	here	for	convenience.	
	
	
Try	it	now!	
Develop	the	application	updateSenator.php,	which	prompts	a	user	for	a	senator’s	
bioguide_id	value.		The	application	then	presents	a	senator’s	name,	party	and	state	
and	provides	text	boxes	for	editing	of	the	address,	phone	and	email	values.		(Name,	
party	and	state	are	not	editable.)		When	new	contact	details	for	a	senator	are	submitted,	
the	XML	file	is	updated	with	the	new	data.	
	
	

A4.3 Adding new elements
	
The	process	for	adding	a	node	to	the	XML	document	is	very	similar	to	that	for	editing.		
Consider	the	application	addBook.php,	which	provides	an	interface	for	the	user	to	offer	
details	for	a	new	book	to	be	added	to	the	data	set.	
	
	

		 	
Figure	A4.5.	Add	a	new	node	

	
	 	

A4:	XML	Manipulation	using	PHP		 9	

echo "<xmp>OLD:\n". $xml->saveXML() ."</xmp>";

$firstBook=$books->childNodes->item(0);

$newID=(int)$root->childNodes->item(0)->nodeValue;
$newTitle=$_POST["title"];
$newAuthor=$_POST["author"];

$titleNode=$xml->createElement("title");
$titleTextNode=$xml->createTextNode("$newTitle");
$titleNode->appendChild($titleTextNode);

$authorNode=$xml->createElement("author");
$authorTextNode=$xml->createTextNode("$newAuthor");
$authorNode->appendChild($authorTextNode);

$newBookNode=$xml->createElement("book");
$newBookNode->setAttribute("id",$newID);
$newBookNode->appendChild($titleNode);
$newBookNode->appendChild($authorNode);

$books->insertBefore($newBookNode,$firstBook);

echo "<xmp>NEW:\n". $xml->saveXML() ."</xmp>";

$xml->save("books.xml");

	
	
The	operation	of	this	code	is	described	by	the	following	steps.	
	

1. Create	the	variable	$firstBook	that	points	to	the	first	<book>	element	
2. Extract	the	value	of	the	<nextID>	element	to	be	used	as	the	id	attribute	for	the	

new	<book>.		Extract	the	POSTed	values	for	the	title	and	author	of	the	new	book	

3. Create	the	new	<author>	and	<title>	nodes	exactly	as	you	did	for	
editBook.php	

4. Create	a	new	<book>	element	with	attribute	id	and	connect	the	new	<title>	
and	<author>	elements	as	children.	

5. Use	the	insertBefore()	method	to	insert	the	new	<book>	element	before	the	
existing	first	<book>.	

	

Do	it	now!	
Load	addBook.php	into	the	browser	and	provide	details	of	a	new	book	to	be	added	to	
the	XML	file.		Verify	that	the	new	<book>	element	is	added.	
	
	
	
	
	

A4:	XML	Manipulation	using	PHP		 10	

Try	it	now!	
You	may	have	noticed	one	incomplete	aspect	of	the	addBook.php	application.	Although	
the	<nextID>	element	is	used	as	the	id	for	the	newly	created	book,	the	value	of	
<nextID>	is	not	changed.	
	
Modify	addBook.php	so	that	the	value	of	<nextBook>	is	incremented	after	each	book	is	
added.	
	
	

A4.4 Removing XML elements
	
The	PHP	DOMDocument	object	also	provides	a	removeChild()	method	that	allows	us	to	
eliminate	elements	from	the	XML	tree.		Examine	the	application	deleteBook.php,	that	
prompts	the	user	for	a	book	id	and	removes	that	<book>	element	from	the	data	set.	
	
	

		 	
Figure	A4.6.	Delete	a	node	

	
	
	
Do	it	now!	
Load	deleteBook.php	into	the	browser	and	verify	that	it	operates	as	expected.	
	
	
	
	
	
	
	
	
	

A4:	XML	Manipulation	using	PHP		 11	

echo "<xmp>OLD:\n". $xml->saveXML() ."</xmp>";

// get element to delete
$id=$_POST["id"];

// find node and make the change
foreach($books->childNodes as $book) {
 if ($book->getAttribute("id")==$id) {
 $books->removeChild($book);
 }
}

echo "<xmp>NEW:\n". $xml->saveXML() ."</xmp>";

$xml->save("books.xml");

	
	
The	deleteBook.php	code	uses	a	foreach	loop	to	conduct	a	simple	linear	search	of	the	
XML	data.		Once	the	element	with	the	matching	id	attribute	value	is	located,	we	can	
remove	it	from	the	XML	tree	by	the	removeChild()	method.		Finally,	we	write	the	
amended	XML	data	back	to	the	file.	
	
	
Try	it	now!		
Combine	the	search	and	delete	functionality	to	allow	a	user	to	search	by	author,	
displaying	a	list	of	that	author’s	books.		The	user	is	than	able	to	click	on	a	book	to	
remove	it	from	the	database.	
	
	
Try	it	now!		
Use	the	PHP	DOMDocument	object	to	construct	a	(very)	simple	PhpMyAdmin-type	
interface	to	the	books.xml	dataset.		The	application	should	support	the	display	of	all	
book	data	in	a	table,	as	well	as	insert,	update	and	delete	operations	on	the	data	values.	
	
	
Advanced	Challenge!		
The	file	MLAs.php	provides	an	XML	representation	of	all	current	Members	of	the	Local	
Assembly	(Ref:	Open	Data	NI,	2016).		Examine	the	structure	of	the	XML	file	and	create	
the	application	showMLAs.php	which	presents	all	constituency	names	in	a	drop	down	
list	and	allows	the	user	to	query	a	selected	constituency	and	return	details	of	all	the	
sitting	MLAs.	
	
	

A4:	XML	Manipulation	using	PHP		 12	

A4.5 Further Information
	

• http://php.net/manual/en/class.domdocument.php	
Formal	definition	of	DOMDocument	from	the	PHP	online	manual	
	

• http://www.binarytides.com/php-tutorial-parsing-html-with-domdocument/	
Tutorial	–	Parsing	the	HTML	DOM	with	DOMDocument	
	

• https://www.youtube.com/watch?v=EN0I3DbvUYw	
Using	the	PHP	SimpleXML	library	(YouTube)	
	

• http://www.ibm.com/developerworks/xml/library/x-xmlphp1/index.html	
A	15-minute	PHP	with	XML	Starter	
	

• http://php.net/manual/en/language.oop5.php	
Using	classes	and	objects	in	PHP	
	

• http://net.tutsplus.com/tutorials/php/object-oriented-php-for-beginners/	
Object	Oriented	PHP	for	beginners	

