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Abstract—The use of Artificial Intelligence (AI) in healthcare, 

particularly in recognising anomalous behaviour during 

Activities of Daily Living (ADLs), is useful for supporting 

independent living. Transparency and interpretability of ADLs 

can play a vital role in decision-making processes, particularly 

in healthcare sectors. This work intends to offer additional 

information to AI-based prediction of ADLs through the use of 

Local Interpretable Model-agnostic Explanations (LIME). In 

this study, 5,125 low resolution thermal images gleaned from 

ADLs in a laboratory environment which mimics a smart home 

were clustered and analysed using Data Mining software and AI 

algorithms respectively. Results indicated that LIME presented 

saliency maps of ADLs in diverse scenarios such as ‘Making 

Tea’ and ‘Sitting Down’ to consume it. Further work will seek 

to fine-tune the models for better accuracy. 

Keywords— Activities of daily living, LIME, Explainable AI, 

Healthcare, Thermal sensing 

I. INTRODUCTION  

In recent years, the use of Artificial Intelligence (AI) 
algorithms in modelling healthcare datasets has presented 
avenues for activity detection, particularly in the area of 
detecting abnormal behaviour during the performance of 
Activities of Daily Living (ADLs) [1]. This development has 
also presented opportunities for ensuring the safety and well-
being of individuals, in independent and in elderly care 
settings [2]. Even so, as AI systems become more advanced, 
there is a pressing need for transparency and interpretability 
of the decision-making processes, particularly in fields where 
these decisions directly affect the health and quality of life of 
individuals [1]. This will further enhance the trustworthiness 
and transparency of the AI model implemented. 

Activity Detection and Prediction (ADP) have been 
broadly studied in many spheres ranging from Engineering, 
and Computer Science to Health Sciences [3]–[5]. ADP can 
involve the use of diverse sensing solutions and algorithms. 
Whilst the former can be implemented with the use of 
wearable, intrusive and non-intrusive sensing solutions, the 
latter can employ edge and wavelet scattering algorithms, 
ensemble learning, Machine Learning (ML) and Deep 
Learning (DL) algorithms [6]–[10]. 

AI which embodies ML and DL has offered many 
sophisticated models in recent years [11]–[13]. Although 
health-related and complicated activities can be predicted with 
these models, the transparency and the explainability of their 
predictions are often questioned [14], [15]. This happens 
because most of the AI models utilise Blackbox algorithms 
which put users in doubt about how predictions culminate [1], 
[16].  

The present work aims to enhance the clarity of AI 
prediction and aid the interpretability of abnormal behaviour 

detection through the systematic application of Explainable 
AI (XAI) such as Local Interpretable Model-agnostic 
Explanations (LIME). Furthermore, this work aims to 
implement a robust and dependable system that would not 
only identify abnormal behaviours but also provide clear and 
understandable justifications for its predictions. The present 
work also intends to enthrone trust and confidence among 
stakeholders such as carers, medical professionals, and family 
members, who rely on monitoring technologies and sensing 
solutions in healthcare and hospital settings. 

The remainder of this paper is organised as follows. 
Section II discusses related work on ADLs monitoring and 
prediction. Section III discusses the Methodology used in this 
work, Section IV presents the Results, and Section V presents 
the Discussion. Conclusions and References are presented in 
Sections VI and VII, respectively. 

II. RELATED WORK 

ADLs monitoring and classification are currently applied 

in many contexts and studies incorporating the use of 

wearable sensing solutions and unobtrusive ambient sensing 

solutions [17]–[19]. These studies also demonstrated the use 

of data mining models and AI algorithms including sensor 

fusion technologies. The fusion of datasets from these sensing 

solutions can help to improve healthcare monitoring practices 

by providing multimodal sensing avenues, thus ensuring the 

safety and well-being of individuals in home-based 

environments. However, these studies did not incorporate 

explainability and interpretability in their models. 

 

        The concept of Explainable Artificial Intelligence (XAI) 

addresses the need for transparency and comprehensibility, 

which is one of the obstacles to deploying AI models in 

healthcare settings [20]. This section reviews key 

publications that contribute towards the understanding of 

abnormal behaviour detection during ADLs and highlights 

the central role of XAI in improving the interpretability and 

reliability of AI models. 

 

   The ability to understand the justifications behind AI-

driven decisions becomes essential in situations where those 

decisions have a direct impact on people's safety and well-

being [1]. In the field of healthcare, decisions can have life-

altering consequences. It becomes evident that the need for 

XAI is not only a matter of trust but also a crucial factor for 

ethical and legal compliance. This sheds light on the unique 

considerations and complexities of implementing XAI in 

healthcare settings [21]. 

 

    Techniques applied in the XAI domain include Local 



Interpretable Model-agnostic Explanations (LIME), SHapley 

Additive exPlanations (SHAP), amongst others [1]. LIME is 

a prominent XAI algorithm that approximates the predictions 

of a complex model at a local level and provides clear 

justifications for specific predictions. Contrariwise, SHAP is 

a well-known XAI method that gives input features equal 

credit for model’s prediction. This enables a better 

understanding of feature extraction. Decision trees, rule-

based systems, and model-agnostic techniques are also 

effective tools for interpretable modelling, as they represent 

binary decisions based on features and enable stakeholders to 

trace the path of predictions. These techniques are not limited 

to a particular machine learning model and can be applied to 

a variety of algorithms, making them versatile instruments for 

enhancing interpretability [20]. 

 

For effective XAI, there are unique challenges 

associated with accurately identifying abnormal behaviours 

[1]. These include human behaviour variability, context 

sensitivity, sensor limitations and noise. Others include 

privacy concerns, adaptation to individual profiles, dynamic 

environments, handling multimodal datasets, and interpreting 

anomalies in medical datasets. Age, health condition, and 

individual habits all contribute to the diversity and variability 

in human behaviour. Identifying abnormal behaviour requires 

an understanding of the activity's context, which can be 

difficult due to the possibility of noise components or datasets 

errors. Privacy concerns are also important, as balancing the 

collection of sufficient data for accurate detection. Adapting 

to individual profiles, dynamic environments, and the 

management of multimodal datasets are additional obstacles. 

Understanding these details is crucial for designing a system 

that not only excels in precision but also stands out for its 

interpretability and transparency. Our study is poised to 

contribute in enhancing the safety and well-being of 

individuals in healthcare settings with this foundational 

knowledge [22]. 

 

Kamal et al. [23] used the study of Alzheimer's patient 

data to show how XAI techniques could change the way 

healthcare diagnoses. Their research demonstrates the 

revolutionary potential of XAI in medical diagnostics. By 

utilising XAI methodologies, they provided clear 

justifications for AI predictions, increasing transparency and 

empowering healthcare professionals. This research goes 

beyond Alzheimer's diagnostics, laying the groundwork for a 

broader application of XAI in the healthcare domain. In 

another study, by Sharma and Kaur [24], it is emphasised the 

significance of XAI in complex contexts, particularly in the 

fields of healthcare and monitoring of ADLs. The research 

highlights the advantages of integrating XAI into monitoring 

operations and anomaly detection. It offers significant 

contributions to the understanding of techniques to improve 

the interpretability of models and demonstrates how they can 

be implemented in practical situations. The research 

emphasises the importance of transparent AI methods in such 

contexts, given the extensive ramifications that model 

predictions can cause. The work of Sharma and Kaur serves 

as inspiration for the practical implementation of 

explainability in complex environments. This promotes 

transparent decision-making processes and accurate 

predictions, which in turn foster trust among stakeholders and 

facilitate widespread adoption [24]. The 2018 survey by 

Adadi and Berrada offers an exhaustive synopsis of XAI 

approaches and methodologies [23]. Their work informs 

about several ways to make it easier to understand how "black 

boxes" work in AI models. These include model-specific 

interpretability techniques, post-hoc explanations, and rule-

based systems, which are all described in more detail in the 

survey. The survey results provided valuable information that 

forms the basis of the project, facilitating an all- 

encompassing comprehension of the tools that can be utilised 

to improve the interpretability of AI models [12]. 

 

XAI deployment faces issues such as balancing 

interpretability, model performance, and regulatory 

compliance. Building trust necessitates honest explanations, 

yet models that are highly interpretable may sacrifice 

performance. Balancing explainability with ethical concerns 

is equally difficult. Despite this, XAI has regulatory 

compliance possibilities [13]. The objective of the present 

work includes to: (i) cluster thermal images obtained during 

ADLs, (ii) utilise distinct AI algorithms such as CNN and 

Keras to examine the grayscale thermal images, (iii) compare 

the performance of the models, (iv) utilise LIME to obtain 

saliency maps of the datasets, and (v) enable anomaly 

detection systems to provide transparent justifications for 

their predictions.  

 

III. METHODOLOGY 
 

To implement this multifaceted research, a comprehensive 
methodology was followed. First, datasets gleaning from a 
low-resolution thermal camera comprising diverse ADLs 
were utilised. The rationale for using low resolution grayscale 
datasets was to preserve the privacy of participants. This 
dataset, which mimics real life ADLs, serves as the foundation 
for identifying and classifying activities carried out in home 
settings. 

Furthermore, the datasets were clustered using the Orange 
data mining software to help identify different stages of the 
ADLs. The stages considered and the number of datasets 
involved are as shown in Table 1. 

Table 1. ADLs stages and datasets involved in the study. 

S/No. ADLs Stages Datasets 

1 Making Tea 866 

2 Entering And Leaving Kitchen 248 

3 Hot Water Only 991 

4 Sitting Down 2159 

5 Walking Around Kitchen 519 

6 Boiling Water 342 

 Total  5125 

 

The datasets in Table 1 presented a case of imbalanced 
data with the stage ‘Sitting Down’ having more than a third of 
the datasets (2,159), and the stage ‘Entering And Leaving 
Kitchen’ having the least as 248. This is a common problem 
in ML that could result in class separation and poor result in 
model performance amongst others [25]. Hence, one of the 
limitations of this study. 



 After the datasets are clustered according to the ADLs 
stages, a Convolutional Neural Network (CNN) model was 
crafted as a benchmark and then, a LIME algorithm. The latter 
presents an advanced toolkit for elucidating specific 
predictions, thereby providing further explanations to the 
predicted activities. This integration is anticipated to provide 
granular insights into decision-making processes in health-
related settings. In addition, it provides mapping and 
transparency to the predictions. 

 Furthermore, this work employs a mixed-methods 
approach which includes quantitative and qualitative data 
collection and analysis such as data pre-processing, model 
construction, XAI integration, evaluation, and comparative 
analysis. The rationale for using a mixed-methods approach is 
justified by its effectiveness in addressing the research 
problem and harmonising with the study's objectives [26]. 
This methodology enables a comprehensive investigation of 
data-driven insights, model creation, and the incorporation of 
XAI methodologies. It allows for complete evaluation and 
comparison, ensuring the robustness and interpretability of 
abnormal behaviour detection in the ADLs context. 

 Utilising unobtrusive sensing technologies such as thermal 
sensors, the research team gathered data in a laboratory setting 
that simulated a smart home environment. The involvement of 
participants in the ADLs tasks contributed to the acquisition 
of a real-life dataset. By employing a hierarchical clustering 
strategy and the Orange data mining software, the data was 
sorted using classification-by-clustering [4], [27] of the 
thermal images. The ADLs were carried out with minimal 
disruption to daily activities, hence, a vivid representation of 
real-life activities [28]. 

 

         Data Pre-processing involved a series of stages aimed 

at optimising the learning process of the machine learning 

model. The initial stage involved loading the data, which 

includes extracting image data features and labels from the 

datasets. The greyscale images were then read using OpenCV 

command line before the images were scaled to 128x128 

pixels. Normalisation was used to keep pixel values 

consistent to improve the model's learning process. The 

processed data was stored in the data list and annotated in the 

labels list. Following that, the data was converted to arrays for 

efficient computation and manipulation during model 

training. In summary, the pre-processing steps encompasses 

standardisation of image dimensions, normalization of pixel 

values, and the division of the dataset into training and testing 

subsets, thus laying the groundwork for the development and 

testing using AI models. 

        Model development utilised CNN model for detecting 

abnormal behaviour during ADLs. CNNs were selected 

because of their capacity to understand hierarchical patterns 

and perform well in image-based analysis [29]. The model is 

built with the Keras framework, which includes convolution, 

pooling, flattening, and fully connected layers. The CNN 

model was compiled and optimised using the Adam optimizer 

and sparse categorical cross-entropy loss function. Recursive 

Auto-Encoders (RAEs) was investigated as an additional tool 

for detecting anomalies, recognising temporal connections, 

and sequential patterns in data [30].  

Furthermore, unlike CNN model, LIME is used for local 

interpretability, ensuring transparency in labelling certain 

behaviours as abnormal. Moreover, LIME helps the 

interpretability and transparency of abnormal behaviour 

forecasts. The mixed-methods approach is appropriate for 

tackling the research challenge and guaranteeing trust in AI 

systems in healthcare, notably in the setting of abnormal 

behaviour detection during ADLs. 

 

IV. RESULTS 

 

To evaluate the results fully, we investigated many 

elements relating to the performance, predictions, and 

visualisation of the models employed for abnormal behaviour 

identification during ADLs. These included the performance 

of CNN, Keras and LIME. 

A. Performance Evaluation of CNN 

Precision, recall, and F1-score metrics were used to test 

the accuracy of the CNN model as presented in Table 2. 

 

Table 2: Classification report for CNN 

Class Label Precision Recall F1-Score 

Making Tea 0.71 0.74 0.72 

Entering And Leaving 
Kitchen 

0.50 0.02 
0.04 

Hot Water Only 0.84 0.99 0.91 

Sitting Down 0.96 1.00 0.98 

Walking Around Kitchen 0.45 0.37 0.40 

Boiling Water 0.30 0.33 0.34 

Overall Accuracy 0.80 

 

From Table 2, the stages of ‘Making Tea’, ‘Hot Water Only’ 

and ‘Sitting Down’ (see Figures 1 – 3) each achieved an 

accuracy of more than 70%. The model also achieved an 

overall accuracy of 80% in identifying anomalous behaviours 

in a variety of tasks carried out in the kitchen area. However, 

similar activities such as ‘Entering and Leaving Kitchen’, 

‘Walking Around Kitchen’ and ‘Boiling Water’ attained 

lower accuracy, as presented in Figures 4 – 6. 

 

       
 

 

     
Figure 4. Entering and 

Leaving Kitchen 

Figure 2. Hot Water Only 

ready for Tea/Coffee 

Figure 6. Boiling Water 

during ADLs 

Figure 5. Walking 

Around Kitchen 

Figure 1. Making Tea 

during ADLs 

Figure 3. Sitting Down 

to Consume Tea/Coffee 



B. Performance Comparison of CNN and Keras 

(VGG16) 

Using the previously mentioned metrics to compare 

Keras (VGG16) and the custom CNN model performance 

during ADLs, classification results are presented in Table 3. 

 

Table 3: Classification score for Keras and CNN 

Metrics Keras (VGG16) CNN 

Accuracy 0.4068 0.8000 

Precision 0.1655 0.7767 

Recall 0.4068 0.8000 

F1-Score 0.2353 0.7769 

 

In Table 3, the overall accuracy of CNN doubles the 

accuracy value of Keras. A similar trend is observed in 

precision, Recall and F1-Score. Although Keras used VGG16, a 

deep CNN architecture designed for image classification, its low 

accuracy metrics may be attributed to a compromise between 

the reduction of false positives and the augmentation of true 

positives. Another area of comparison of the performance of 

CNN with Keras models is the labels appended to the 

activities as presented in Table 4. 

 

Table 4: Prediction carried out On CNN and Keras 

Image CNN 

Prediction 

Keras Prediction 

 

 

Making Tea Sitting Down 

 

 

Sitting Down Sitting Down 

 

 

Boiling 

Hot 

Water 

Sitting Down 

 

From Table 4, CNN predicted the ADLs such as ‘Making 

Tea’, ‘Sitting Down’ and ‘Boiling Hot Water’ correctly 

whilst the VGG16-based fine-tuned Keras model was 

incapable of predicting the ADLs other than ‘Sitting Down’ 

due to its model efficiency. Furthermore, incorrect 

representation of diverse behaviours within the training data 

may have also contributed to incorrect classifications. Due to 

these factors, the model was unable to effectively 

differentiate rather generalise, resulting in an excessive 

dependence on specific patterns and the misinterpretation of 

the ADLs. 

 

B. Analysis of LIME Visualisations 

LIME functions by emphasising local interpretability, 

wherein predictions are explicated at the instance level as 

opposed to the complete dataset [1]. This approach modifies 

input features to understand predictions across multiple 

models [31]. It approximates the original model within a 

specified neighbourhood by generating simplified local 

models around particular instances. LIME emphasises the 

significance of features through the utilisation of weighted 

samples, saliency maps counterfactuals and feature 

attribution [32]. The visualisation of LIME's results improves 

the interpretability of the model by assisting users in 

comprehending influential features for a specific prediction 

[33]. This method enhances the credibility of AI model 

judgements by providing clarity regarding their decision-

making procedure [33]. 

 

LIME employs relative importance scores rather than 

standardised units to quantify the significance of features via 

weighted samples [34]. Computed using the weights assigned 

to perturbed samples produced in the vicinity of an instance 

of interest, these scores indicate the importance of features in 

the context of a particular prediction. LIME functions behave 

as comparative metrics, prioritising the significance of 

various attributes in shaping the locally interpretable model 

developed for a specific case. These scores are, nevertheless, 

relative indicators of feature prominence due to the absence of 

a standardised unit of measurement. 

C. CNN LIME Visualisation Comparison 

 

LIME prediction of ADLs such as ‘Making Tea’ can 

produce saliency maps of the thermal blobs in the instance of 

thermal camera as was the case in this study. C omparisons 

of LIME visualisations for three predictions in this class are 

presented in Table 5. 

 
Table 5: LIME Visualisation of ADLs predictions. 

LIME Images 

  

 
 

 
 



In Table 5, the visualisation maps depict the individual's 

ADLs patterns as they evolve with time. In determining the 

probability of ‘Making Tea’, this visualisation employs 

comprehensive ADLs patterns as its foundation, rather than 

singling out any particular isolated action. The maps cover 

the areas of prediction for the images depending on the 

thermal blobs spread in the images. All three visualisations 

seem to affirm the prediction of ‘Making Tea’ by showing 

the areas of the image that are instrumental to the 

prediction. 

D. Keras and CNN LIME Visualisation Comparison 

 

LIME visualisation using Keras and CNN of a single 

activity, ‘Sitting Down’ showed further insights as 

presented in Table 6. 

 
Table 6. LIME visualisation for ‘Sitting Down’. 

Predict

ion 

Image CNN Keras 

Sitting 

Down 

 

 

 

 

 

 

 
In Table 6, interesting observations were made after 

employing LIME to assess the interpretability of the CNN 

and Keras models. Similar regions were covered by the 

Keras LIME and CNN LIME explanations, indicating that 

the two explanations shared a certain degree of consistency. 

Although the accuracies of these explanations were not 

computed, the prediction by CNN seems to offer a close 

semblance to the original image in row 2 column 2 (see 

Table 6). This analysis emphasises the capacity of CNN to 

incorporate more complex feature details, while LIME 

demonstrates its ability to provide coherent insights into 

model decisions. 

 

V. DISCUSSION 

 

Performance differences between a custom CNN and 

Keras (VGG16) models were found to be statistically 

significant when attempting to identify abnormal 

behaviours in domestic activities. The accuracy of the CNN 

model was 80%, whereas Keras performed less effectively 

at 40.68%, predicting exclusively 'Sitting Down' 

accurately. Additionally, accuracy, recall, and F1- score 

were better with the CNN model. The similarities between 

the two models were underscored through the LIME 

visualisation, which emphasised CNN's capacity to 

incorporate intricate features. Consistent with the research 

conducted by Barr Kumarakulasinghe et al. [35] regarding 

the interpretability of LIME, this study demonstrated its 

efficacy in elucidating model predictions. In general, the 

CNN model exhibited a good performance compared to 

Keras. 

 

Comparing this study to a previous study on evaluating 

LIME on clinical machine learning classification models, 

levels of overlap and satisfaction are determined [3]. Their 

study examines the applicability of LIME as a tool for 

interpreting black-box machine learning models within 

healthcare environments. Their results indicated that LIME 

explanations correspond to the interpretations of clinicians in 

several instances, demonstrating their medical relevance and 

hence the importance of their application to ADLs. 

Nevertheless, concerns related to trust suggest that LIME 

would not invariably enthrone trust in AI predictions rather 

explanation which can invoke trust. 

VI. LIMITATION OF THE STUDY 

 

Although LIME interpretability of ADLs datasets was 

relevant in this study, imbalanced data (earlier mentioned) 

adversely affected its accuracy. Furthermore, ADLs stages 

such as 'Entering and Leaving Kitchen', ‘Boiling Water’ and 

'Walking Around Kitchen,' achieved lower accuracy results 

due to the similarities of these activities and probably also, 

due to the size of their datasets. 

VII. CONCLUSION 

 

In summary, the performance disparities between the 

custom CNN and Keras (VGG16) models in detecting 

anomalous behaviours in kitchen activities were found to 

be significant during the comparative analysis. In 

comparison to Keras, the CNN model demonstrated 

increased accuracy, precision, recall, and F1-Score metrics. 

The LIME visualisation drew attention to parallels between 

the models while emphasising CNN's capacity to 

incorporate more intricate characteristics. On the other 

hand, Keras capability to comprehend a wide range of 

behaviours can be achieved by enhancing the model 

architecture, augmenting, and diversifying the training 

datasets, and optimising feature extraction techniques. In 

addition, further investigation, and application of 

sophisticated interpretability techniques such as LIME 

would be beneficial for gaining a comprehensive 

understanding of model predictions. For real-world 

applications, research concentrating on enhancing 

interpretability and model performance in complex 

behavioural recognition tasks would be invaluable. Future 

work would also involve finetuning the models to achieve 

better accuracy. 
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