
Embedded DNN Classifier for Five Different
Cardiac Diseases

Muhammad Shakeel Akram, Bogaraju Sharatchandra Varma, Dewar Finlay
School of Engineering

Ulster University
Belfast, United Kingdom

Email: {akram-ms, s.bogaraju, d.finlay}@ulster.ac.uk

Abstract—The evolution of modern healthcare has been signif-
icantly shaped by the convergence of connected sensors, smart
Wearable Devices, Artificial Intelligence, and the Internet of
Things giving rise to the domain of eHealth and offering invalu-
able insights into the complications of heart health. eHealth’s im-
pact extends to facilitating diagnosis, treatment, and medication
for a diverse array of conditions, prominently including cardiac
diseases. Despite substantial strides in medical technology, the
detection of arrhythmia remains a persistent challenge, with
early diagnosis holding the potential to avert numerous fatalities.
This paper proposes an ultra-lightweight (876KB) Embedded-
Deep Neural Network model specifically designed for resource-
constrained devices. With high accuracy ranging from 94%
to 99% for five classes identified from the MIT-BIH dataset,
the proposed model is small enough to fit on tiny devices
like the Arduino Nano BLE 33 Sense. This translates to low
power consumption and real-time inference, making it ideal for
screening cardiac diseases on wearable devices.

I. INTRODUCTION

Globally, 50 million individuals face a significant risk from
Cardiac diseases (CDs) [1]. These CDs account for nearly
37% of worldwide deaths. The threat of CD-related fatalities
is projected to rise, given the anticipated growth of the elderly
population to 1.4 billion by 2030 and 2.1 billion by 2050 [2],
[3]. Among CDs, arrhythmia is prevalent and affects 1 out
of 1000 people annually [4]. Among Life-Threatening CDs
(LTCDs), ventricular arrhythmias account for 80% of LTCDs
and are hard to diagnose, often leading to rapid mortality
(annually over 350K in the USA) within minutes [5], [6],
necessitating prompt diagnosis and treatment to prevent these
damage.

Cardiac diseases encompass electrical (arrhythmia), circu-
latory (blood vessels disorder), and structural (heart muscle
diseases) issues [1]. Various parameters contribute to arrhyth-
mia diagnosis, including heart rate from ECG and PPG,
EEG, MRI, CT scan, heart rate variability, stroke volume,
cardiac output, systolic time intervals, left ventricular ejection
time, pre-ejection period, systolic time ratio from Impedance
Cardiography (ICG), chaotic electrical signals, and clinical
data. Indicators like chronic obstructive pulmonary disease,
renal dysfunction, vascular disease, and valvular disease are
also significant in identifying CDs. ECG signals stand out
as highly effective for real-time independent systems in CDs
diagnosis [7].

Considerable research and development endeavours have
focused on creating machine learning solutions using Convo-
lution Neural Networks (CNNs) and Deep Neural Networks
(DNNs) to analyze vital ECG data for prompt CDs diagnosis
[8]–[10]. Some models specialize in specific arrhythmias,
while others focus on normal and abnormal rhythm classifi-
cations. Additionally, some larger models demand substantial
memory space, flash memory, and computational capabilities,
highlighting a gap for improvement and an opportunity to
leverage the abundance of available embedded devices in
healthcare. The need arises for automatic, cost-effective, low-
power, real-time, and efficient AI-based detection of CDs,
which holds the potential to revolutionize low-power device
diagnosis.

We propose an Embedded DNN classifier for five different
CDs using TinyML [11]. This model is trained on engineered
data and implemented on an Arduino BLE Sense board. The
model achieves very high accuracies ranging from 94% to
99% for each class with a compact size of 876KB. The model
achieves a very good F1 score considering the utilization
of a large dataset comprising 305,066 pre-processed samples
segmented from the MIT-BIH dataset. We discuss 24 distinct
implementations enabling us to study the characteristics of the
model to come up with a highly accurate tiny model. This
compact Embedded-DNN classifier can be readily adapted
for resource-constrained wearable devices, enabling real-time
classification of CDs. This pursuit aligns with the larger
goal of enhancing diagnostic capabilities while utilizing the
advantages of diverse embedded devices [12].

The organization of the paper is as follows. Background
is discussed in section II. Details about the processes in-
volved in model development and dataset preparation are
elaborated in Section III. Subsequently, Section IV provides a
comprehensive overview of the achieved results, accompanied
by details on various implementations suitable for different
resource-constrained embedded devices. Related work with a
comparison to our work is presented in Section V followed
by the conclusion in Section VI.

II. BACKGROUND

AI algorithms play a pivotal role in learning complex
patterns from data, showcasing significant potential in CD
diagnoses reliant on digitized patient-specific information like

979-8-3503-5298-6/24/$31.00 ©2024 IEEE

ECGs. Three main types of algorithms are prevalent: su-
pervised learning, unsupervised learning, and reinforcement
learning. Supervised learning holds particular importance in
many CD diagnosis methods, including SVM, KNN, GNNs,
LSTM, CNN, and DNN. CNNs and DNNs have emerged as
effective tools for processing ECG signals [13], [14]. CNN
leverages local correlation and translation invariance similar
to some image signals [13], while DNNs excel in recogniz-
ing patterns and extracting valuable features from raw input
data without extensive preprocessing, feature engineering, or
handcrafted rules. This makes them particularly suitable for
interpreting ECG data.

TinyML represents a research direction aimed at enabling
ML processing on embedded systems [11]. This is achieved
through the implementation of bare-metal and lightweight
inference libraries, such as TFLite Micro, TVM, CMSIS-
NN, and TinyEngine, coupled with the removal of unneces-
sary functionalities, including debugging. Additionally, model
weights and computational graphs can be simplified to min-
imize memory and computational overhead. Edge processing
also presents a significant challenge in shrinking the com-
putational requirements of advanced ML-based near-sensor
data analysis algorithms. These challenges are particularly pro-
nounced within the mW-range of always-on battery-powered
systems with processing capabilities exceeding 1GOPS, oper-
ating on small battery power and energy budgets, computation
ranging from 1MHz to 400MHz, 2KB to 4MB Flash, and
32KB to 2MB storage [11], [15]. Therefore model must
fit within the device memory, ensuring compatibility with
embedded devices constrained by limited memory, power,
and computational capacity while capturing the complexity of
the data for effective computation. On-device ML capabilities
in embedded systems offer a solution to these challenges,
addressing concerns and potentially improving misdiagnosis
rates [16]–[23].

III. EXPERIMENTAL SETUP

The overall development process is depicted in the block
diagram shown in Fig.1 and the Algorithm 1. The Embedded-
DNN is implemented and tested on the Arduino BLE 33
Sense [24], utilizing the following tools: Arduino IDE [25]
for embedded design, TensorFlow [26] for DNN develop-
ment, TinyML-Gen [27] for C code generation for micro-
controllers from TensorFlow trained models, TensorFlow Lite
Micro (TFlite-micro) [28] for running ML models on micro-
controllers. Physionet’s MIT-BIH Arrhythmia Dataset [29],
[30] is used for developing the model.

The pre-processed dataset was organized into 1x187 full
precision floating point (Float32) samples, distributed equally
across five categories: start=0

1) Normal beat (N/Class 0)
2) Supra-ventricular premature beat (S/Class 1)
3) Ventricular escaped beat (E/Class 2)
4) Fusion of ventricular and normal beat (F/Class 3)
5) Unclassifiable beats (Q/Class 4)

Fig. 1. Block Diagram explaining Embedded-DNN Deployment Processes.

Algorithm 1: Training and Deployment of Embedded-
DNN on Arduino BLE 33 Sense

Data: Trained DNN model in TensorFlow
Result: Arduino sketch for inference of 5 Cardiac

Diseases

Embedded-DNN Training using TensorFlow:;
begin

Embedded-DNN model using TensorFlow Keras
layers;

Train the model with found optimization
parameters;

Convert Embedded-DNN Model using
tinyml-gen:;

begin
Run tinyml-gen to convert the TensorFlow
model into C code i.e. Embedded-DNN.h;

Include the generated files i.e. Embedded-DNN.h
in the Arduino sketch;

Arduino Sketch for Embedded-DNN Inference
using tflite-micro:;

begin
Include necessary tflite-micro library files;
Initialize the TensorFlow Lite interpreter;
Implement functions for model initialization and
inference;

Compile and Upload to Arduino BLE 33 Sense:;
begin

Compile the Arduino sketch and upload it to the
Arduino board;

Run Inference on Arduino:;
begin

Power up the Arduino and monitor the output for
inference results;

In total, the dataset comprises 305,066 samples, with a dis-
tribution of 250,000 (85%) for training, 44,120 (15%) for
validation, and 10,946 for testing. The testing samples were
never exposed to the model during training. In addition to this,
noise present in the ECGs of some of the CDs makes it difficult
to diagnose and needs to be addressed. Therefore, Gaussian
noise was added to the dataset involved in the training process
i.e. training and validation to enhance the model’s efficiency,
with a mean value of 0 and a standard deviation of 0.05.

The Embedded-DNN is built using TensorFlow and com-
prises a total of 10 layers with the same padding, encompass-
ing an input layer with one input channel and output layers
featuring five output channels. Among these, eight hidden
layers are composed of both convolutional and dense layers.
The entire model encompasses 35,296 trainable parameters.
The optimization process employs the Adam optimizer, while
the loss function is based on categorical cross-entropy, learn-
ing rate of 0.001, ReLU activation, and Top-1 accuracy is
observed.

The trained model was converted using the TinyML-Gen
into a form that could be deployed on the Arduino Nano 33
BLE Sense, which is a small but powerful board-based SoC
with an Arm Cortex-M4F 32-bit processor running at 64 MHz.
The board has 1 MB of flash memory and 256 kilobytes (KB)
of RAM. To ensure that the model could fit within the available
memory and provide accurate inferences, it was developed
with the memory size of the board in mind.

Finally, the converted model for the inference was deployed
on Arduino Nano 33 BLE Sense using Arduino IDE and
TFlite-micro. We developed a controller capable of efficiently
classifying five different cardiac diseases on the device.

IV. RESULTS AND DISCUSSION

The model fitting in the Arduino flash and performing
inference with high accuracies has been achieved by exploring
various pre-processing steps and training methods. In this
paper we discuss twenty-four relevant experiments having
different combinations of dataset pre-processing and split for
training, testing and validation, different combinations of DNN
layers and different combinations for each layer’s neurons
and kernels. Four different settings are used for preparing the
training and validations data:

1) 21500 unbalanced Validation samples and 391 Unbal-
anced Test Samples are used for experiment setup num-
ber 1-3, 6-18, and 21.

2) 10946 unbalanced Validation samples and 10946 unbal-
ance Test samples are used for experiment number 4.

3) Balanced validation samples were created by resam-
pling. 44120 of these and unbalanced 10946 Test sam-
ples are used for experiment number 5, 19, 20, 22, and
24.

4) 44120 resampled and balanced samples are used for Val-
idation and for Test. The resampled values are divided
equally into Validation and Test datasets for experiment
setup number 23.

To enhance model training, specific configurations were
used to adjust the batch size and epochs. Training with batch
size of 32 and 8 epochs was performed experiments 1-11, 13-
19, 21, and 23. Experiments 20, 22, and 24 were conducted
with batch size 32 and 15 epochs. For experiment number 12,
we employed a batch size of 100 and 10 epochs. These tailored
settings were crucial in optimizing the training process and
achieving meaningful results. Each experiment set’s findings
provided the base for the next experiment to reach the highly
accurate model within the available limits.

TABLE I
MODEL SIZE AND INFERENCE ERRORS FOR THE EXPERIMENTS

Exp.# Trainable
Parameters

TinyML-Gen Model Size

1 389701 9405KB Does not fit BLE-FLASH
2 387781 9356KB Does not fit BLE-FLASH
3-5 328389 7936KB Does not fit BLE-FLASH
6 195077 4714KB Does not fit BLE-FLASH
7 183033 4424KB Does not fit BLE-FLASH
8 125765 3028KB Does not fit BLE-FLASH
9 98725 2394KB Inference Error: Arena size is too small

for all buffers. Needed 71936 but only 29280
was available.

10 48413 1206KB Inference Error: Arena size is too small
for all buffers. Needed 35968 but only 29536
was available.

11 46331 1132KB Inference Error: Arena size is too small
for all buffers. Needed 33928 but only 29536
was available.

12 48389 1179KB Inference Error: Arena size is too small
for all buffers.

13 44790 1094KB Inference Error: Arena size is too small
for all buffers. Needed 32608 but only 29536
was available.

14 43249 1057KB Inference Error: Arena size is too small
for all buffers. Needed 31472 but only 29568
was available.

15 41708 1020KB Inference Error: Arena size is too small
for all buffers. Needed 30368 but only 29568
was available.

16 40167 983KB Fits BLE-FLASH and performs Infer-
ence.

17 37085 909KB Fits BLE-FLASH and performs Infer-
ence.

18 35544 871KB Fits BLE-FLASH and performs Infer-
ence.

19,20 35296 876KB Fits BLE-FLASH and performs Infer-
ence.

21-23 32462 797KB Fits BLE-FLASH and performs Infer-
ence.

24 22046 547KB Fits BLE-FLASH and performs Infer-
ence.

Table I summarizes the model trainable parameters and size
of the model deployable on BLE sense board. Table I and
Figure. 2 are distributed in three major sections based on Flash
and RAM available on Arduino BLE 33 Sense.

1) Experiments Number 1-8 encounter a challenge as they
exceed the Flash capacity and cannot be deployed on the
selected device for this particular experiment. However,
Figure 2 clearly illustrates that the initial six experiments
yield high overall accuracy as well as accuracy for each
class. Despite their final model size ranging between

9405 KB to 4714 KB, surpassing the BLE-FLASH limit,
these models can be successfully deployed on various
other embedded devices with larger Flash memory. Ex-
amples of such devices include Arduino Nano RP2040
Connect, Raspberry Pi Zero 2 W, Raspberry Pi Pico W,
ESP32-WROOM-32, and others.

2) Experiments Number 9-16 represent the section facing
the challenge of inference errors due to an inadequate
arena size for all buffers when deployed on the se-
lected embedded device for this specific experiment.
Similar to the initial set of experiments, this section
demonstrates higher accuracy metrics particularly for
each class in experiments 9 and 13-15. These models
can be effectively deployed on BLE but they encounter
inference failures attributed to insufficient arena size,
preventing the coverage of all buffers during inference.
Despite this challenge for deployment on Arduino BLE
33 Sense, these models can be successfully deployed on
various embedded devices with equal or greater flash
memory and higher RAM compared to Arduino BLE
33 Sense. Suitable devices encompass Arduino Nano
RP2040 Connect, Raspberry Pi Zero 2 W, Raspberry
Pi Pico W, ESP32-WROOM-32, and others.

3) Finally, Experiments 17-24 cover the section of success-
fully deploying the Embedded-DNN and conducting the
inference on Arduino BLE 33 Sense. This section high-
lights superior performance in experiments 17-21 when
tested on the device. Beyond exclusively showcasing
these models for Arduino BLE 33 Sense, the models
in this section opens the door for embedded deployment
on any device with flash memory exceeding 547 KB.

In summary, all these experiments consistently yield ac-
curacies surpassing 90%, showcasing notable and acceptable
results for the classification of five different cardiac diseases.
Despite some outliers due to insufficient device memory,
the models exhibit a size range from 797 KB to 9405 KB,
underscoring the versatility of the Embedded-DNN model.
This adaptability significantly broadens the range of devices
where the model can be effectively deployed.

The experiments done yield significant insights into the
training process. Particularly, training on an unbalanced val-
idation dataset results in bias, as evidenced by Experiment
numbers 1-3, 6-18, and 21. Moreover, it is evident that a higher
batch size does not necessarily translate to a more accurate
model, as observed in Experiment number 12. The distribution
of the resampled test dataset between validation and test does
not accurately represent true accuracy, as indicated by Exper-
iment number 23. Particular experiments, such as numbers 7
and 16 (UnBalanced Validation and fewer test samples, batch
size 32, and 8 epochs), 12 (UnBalanced Validation and less test
samples, batch size 100, 10 epochs), and 23 (distribution of
resampled dataset between validation and test, batch size 32,
and 8 epochs), showcase that the worst results are achieved
under certain conditions. Additionally, it is highlighted that
a higher number of epochs, below which model overfitting

occurs, can contribute to improvements in model performance,
as demonstrated by Experiment numbers 19 and 20.Effective
Embedded-DNN model training requires thoughtful consider-
ations in dataset balancing, batch size selection, and epoch
tuning.

Fig. 2. Each Cardiac Disease’s achieved accuracy as well as an overall
accuracy chart against each experiment setting.

Fig. 3. Training vs validation Accuracy.

Fig. 4. Training vs validation Loss.

The training and validation outcomes of the Embedded-
DNN in experiment number 20 are clearly illustrated in Figure
3 and 4. During training, the accuracy reached 97.51%, while
the validation accuracy attained 92.77%. This progress was
achieved within a training time of 1 hour 35 minutes 32
seconds of CPU time, and 58 minutes 22 seconds of wall time.
The decision to select experiment number 20 for deploying the
final highest-performing model on Arduino BLE 33 Sense is
based on the following considerations. Despite experiments
17, 18, and 21 displaying higher performance in Figure 2, it’s

Fig. 5. Model’s Confusion Matrix.

noteworthy that they were trained on unbalanced validation
samples. This led to bias in the model towards certain classes,
evident in the graph showcasing distinct accuracy variations
between classes. Additionally, their testing was conducted on
a very small set of only 391 samples, raising concerns about
the representativeness of the test set in capturing the broader
data distribution. Experiment 19, although providing nearly
identical results to the selected experiment 20, holds prefer-
ence. Both were trained on balanced training and validation
datasets to mitigate bias. However, experiment 20 stands out as
it was trained with a batch size of 32 and 15 training epochs,
achieving a slightly higher test accuracy of 95% compared to
94% for N/Class 0. Figure.5 represents the confusion matrix
on test datasets for each class. The F1 score was also better,
measuring 0.82604 in comparison to 0.79127.

V. RELATED WORKS

The existing works related to classifying more than just
normal and abnormal rhythms are detailed in Table II. This
table provides insights into the methods, datasets, achieved
performance, and limitations of each work, offering a com-
parison of our contributions. The table includes references
(Ref.), Accuracy (A), Sensitivity (S), Specificity (Sp), and
Precision (P) as key evaluation criteria. These metrics, such
as Accuracy, Positive Predictive Value (PPV), F1 score, and
Model Size, collectively offer a comprehensive understanding
of performance, efficiency, and resource allocation.

The proposed Embedded-DNN model emerges as an ac-
curate classifier of five cardiac diseases (CDs) on an em-
bedded device having a remarkably small model size of 876
KB. Compared with [2], despite a slight accuracy drop of
4.85% and fewer classes, our model is trained with a larger
set of 305,066 samples and supports inference on resource-
constrained devices. In contrast to [31], our model classifies
five classes instead of six. However, our model exhibits a
higher accuracy by 0.82% and also facilitates inference on
resource-constrained embedded devices. Regarding [8], our
model, while experiencing a modest accuracy drop of 3.32%
and handling fewer classes, surpasses by using a larger sample

size of 305,066 and enabling inference on resource-constrained
devices.

Similarly, compared to [9], our model demonstrates a slight
accuracy reduction of 4.10%, focusing on five classes with
a larger sample size of 305,066, ensuring diversity and en-
abling inference on resource-constrained devices. Likewise,
in relation to [10] and [32], our model maintains competi-
tive accuracy with only a 3.5% and 3% drop, respectively.
However, it uses a larger sample size of 305,066, ensuring
diversity and supporting inference on resource-constrained
devices. Importantly, our model extends classification to five
classes, outperforming the related work that focuses on four
classes.

TABLE II
EMBEDDED-DNN COMPARISON WITH STATE-OF-THE-ART RELEVANT

SOLUTIONS

Methods Performance Limitations
SVM Classifier for 17
Classes, GA feature selec-
tion and parameter opti-
mization, MIT-BIH [2]

A: 98.85% S:
90.20%, Sp:
99.39%

Limited (512) ECGs
and not an embedded
device implantation.

CNN Classifier for 6
Classes, Daubechies WT,
MIT-BIH, and CUDB
[31]

A: 93.18%, S:
95.32%, Sp:
91.04%, PPV:
91.41%

Low Accuracy and
not an embedded de-
vice implantation.

U-net DNN Classifier for
5 Classes, auto-encoder,
and MIT-BIH [8]

A: 97.32% Limited (47 patient)
data and and not an
embedded device im-
plantation.

CNN-LSTM classifier for
6 Classes, and MIT-BIH
[9]

A: 98.10%, S:
97.50%, Sp:
98.70%, PPV:
98.69%

Limited (1004 ECGs)
data and not an
embedded device
implantation.

DNN Classifier for
5 Classes, Modified
Frequency Slice WT, and
MIT-BIH [10]

A: 97.5%,
S:71.4%, Sp:
67.2%

Limited (47 patient)
data and not an
embedded device
implantation.

Robust Deep Dictionary
Learning Classifier for 4
Classes, Hand-crafted In-
put Features, and MIT-
BIH [32]

A: 97.0%, S:
16.9%, Sp:
67.2%

Low sensitivity and
Specificity. Classify-
ing only 4 classes.

DNN Classifier for 5
Classes, and MIT-BIH
[Our]

A: 94%, F1:
0.826, Model
Size: 876KB,
Embedded,
305,066 data
samples

–

VI. CONCLUSION

Cardiac Diseases (CDs) have a significant impact on a
diverse population, with a particularly pronounced effect on
the elderly. The ageing demographic is projected to grow
further, placing additional strain on healthcare systems, despite
substantial progress in eHealth. CDs pose life-threatening
risks due to their time-sensitive nature, necessitating rapid
diagnosis and treatment that could be facilitated by Real-Time
Independent Systems (RTIS).

While extensive research has explored various Machine
Learning (ML) solutions for CDs diagnosis and treat-
ment, Convolutional Neural Networks/Deep Neural Networks

(CNN/DNN) have demonstrated superior performance. How-
ever, the imperative lies in optimizing these ML algorithms
for reduced power and time consumption while preserving
performance metrics. Addressing this challenge involves com-
pressing models, and implementing real-time AI on the edge or
embedded devices, encompassing communication efficiency,
computation efficiency, heterogeneity, the significance of wear-
able devices and their role in remote health support.

This paper provides a solution to implement a CD classifier
on embedded devices with very good accuracy. The model is
deployed on Arduino Nano BLE 33 Sense for the efficient
classification of the five different CDs with 94% accuracy
while having only 876KB of model size. This makes it
extremely useful for real-time diagnosis of CDs on resource-
constrained devices without communicating with the server.
This paper also provides an exploration framework wherein
twenty-four different models were developed and carefully
tweaked to come up with an optimum design that can fit in
a tiny embedded device while still maintaining accuracy. The
findings underscore the importance of thoughtful considera-
tions in model parameters, dataset balancing, batch size selec-
tion, and epoch tuning for effective Embedded-DNN model
training. The insight from this paper can easily be adapted
to other healthcare domains, fostering the development of
real-time independent systems playing an important role in
improving the quality of care and enhancing the well-being of
patients worldwide.

REFERENCES

[1] H. R. Society, “Heart rhythm disorders,” 2022. Available at:
https://upbeat.org/heart-rhythm-disorders.

[2] P. Pławiak, “Novel methodology of cardiac health recognition based
on ecg signals and evolutionary-neural system,” Expert Systems with
Applications, vol. 92, pp. 334–349, 2018.

[3] U. R. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan, and
M. Adam, “Automated detection of arrhythmias using different inter-
vals of tachycardia ecg segments with convolutional neural network,”
Information sciences, vol. 405, pp. 81–90, 2017.

[4] J. Brugada, “Cardiac arrhythmias and sudden death,” e-journal of the
ESC Council for Cardiology Practice, vol. 2, January 2004.

[5] S. Sahoo, B. Kanungo, S. Behera, and S. Sabut, “Multiresolution wavelet
transform based feature extraction and ecg classification to detect cardiac
abnormalities,” Measurement, vol. 108, pp. 55–66, 2017.

[6] E. J. Benjamin, M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das,
R. Deo, S. D. De Ferranti, J. Floyd, M. Fornage, C. Gillespie, et al.,
“Heart disease and stroke statistics—2017 update: a report from the
american heart association,” circulation, vol. 135, no. 10, pp. e146–e603,
2017.

[7] C. W. Tsao, A. W. Aday, Z. I. Almarzooq, A. Alonso, A. Z.
Beaton, M. S. Bittencourt, A. K. Boehme, A. E. Buxton, A. P.
Carson, Y. Commodore-Mensah, et al., “Heart disease and stroke
statistics—2022 update: A report from the american heart association,”
Circulation, vol. 145, no. 8, pp. e153–e639, 2022.

[8] S. L. Oh, E. Y. Ng, R. San Tan, and U. R. Acharya, “Automated beat-
wise arrhythmia diagnosis using modified u-net on extended electrocar-
diographic recordings with heterogeneous arrhythmia types,” Computers
in biology and medicine, vol. 105, pp. 92–101, 2019.

[9] S. L. Oh, E. Y. Ng, R. San Tan, and U. R. Acharya, “Automated
diagnosis of arrhythmia using combination of cnn and lstm techniques
with variable length heart beats,” Computers in biology and medicine,
vol. 102, pp. 278–287, 2018.

[10] K. Luo, J. Li, Z. Wang, and A. Cuschieri, “Patient-specific deep archi-
tectural model for ecg classification,” Journal of healthcare engineering,
vol. 2017, 2017.

[11] V. J. REDDI, “Fundamentals of tinyml,” 2022.
Available at: https://learning.edx.org/course/course-
v1:HarvardX+TinyML1+3T2020/home.

[12] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for
machine learning: Challenges and opportunities,” in 2017 IEEE Custom
Integrated Circuits Conference (CICC), pp. 1–8, IEEE, 2017.

[13] Y. Wei, J. Zhou, Y. Wang, Y. Liu, Q. Liu, J. Luo, C. Wang, F. Ren,
and L. Huang, “A review of algorithm & hardware design for ai-based
biomedical applications,” IEEE transactions on biomedical circuits and
systems, vol. 14, no. 2, pp. 145–163, 2020.

[14] G. Quer, R. Arnaout, M. Henne, and R. Arnaout, “Machine learning and
the future of cardiovascular care: Jacc state-of-the-art review,” Journal
of the American College of Cardiology, vol. 77, no. 3, pp. 300–313,
2021.

[15] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “Gap-8: A risc-v soc for ai at the edge of the iot,” in 2018
IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pp. 1–4, IEEE, 2018.

[16] A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn,
M. P. Turakhia, and A. Y. Ng, “Cardiologist-level arrhythmia detection
and classification in ambulatory electrocardiograms using a deep neural
network,” Nature medicine, vol. 25, no. 1, pp. 65–69, 2019.

[17] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2820–2828, 2019.

[18] M. S. Abdelfattah, Ł. Dudziak, T. Chau, R. Lee, H. Kim, and N. D.
Lane, “Best of both worlds: Automl codesign of a cnn and its hardware
accelerator,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6, IEEE, 2020.

[19] J. Tang, D. Sun, S. Liu, and J.-L. Gaudiot, “Enabling deep learning on
iot devices,” Computer, vol. 50, no. 10, pp. 92–96, 2017.

[20] G. Klas, “Edge computing and the role of cellular networks,” Computer,
vol. 50, no. 10, pp. 40–49, 2017.

[21] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” computer, vol. 50, no. 10, pp. 58–67, 2017.

[22] P. B. Soundarabai, P. Augustine, and S. Vinod, “Demystifying the edge
ai paradigm,” Applied Edge AI: Concepts, Platforms, and Industry Use
Cases, p. 23, 2022.

[23] D. Sopic, A. Aminifar, A. Aminifar, and D. Atienza, “Real-time event-
driven classification technique for early detection and prevention of
myocardial infarction on wearable systems,” IEEE transactions on
biomedical circuits and systems, vol. 12, no. 5, pp. 982–992, 2018.

[24] Arduino, “Nano 33 ble sense,” 2024. Accessed 2024-02-06:
https://docs.arduino.cc/hardware/nano-33-ble-sense/.

[25] Arduino, “Arduino ide,” 2023. Accessed 2024-02-06:
https://www.arduino.cc/en/software.

[26] TensorFlow, “Tensorflow,” 2024. Accessed 2024-02-06:
https://www.tensorflow.org/.

[27] S. Salerno, “Generate c code for microcontrollers from tensorflow mod-
els,” 2020. Accessed 2024-02-06: https://pypi.org/project/tinymlgen/.

[28] TensorFlow, “Tensorflow lite for microcontrollers,” 2024. Accessed
2024-02-06: https://github.com/tensorflow/tflite-micro.

[29] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, ..., and H. E. Stanley, “Physiobank, physiotoolkit,
and physionet: Components of a new research resource for complex
physiologic signals,” Circulation [Online], vol. 101, no. 23, pp. e215–
e220, 2000.

[30] A. C. Community, “Arrhythmia prediction on ecg data using cnn.”
Online:Cainvas AI-Tech Systems platform, April, 2022.

[31] U. R. Acharya, H. Fujita, S. L. Oh, U. Raghavendra, J. H. Tan, M. Adam,
A. Gertych, and Y. Hagiwara, “Automated identification of shockable
and non-shockable life-threatening ventricular arrhythmias using convo-
lutional neural network,” Future Generation Computer Systems, vol. 79,
pp. 952–959, 2018.

[32] A. Majumdar and R. Ward, “Robust greedy deep dictionary learning for
ecg arrhythmia classification,” in 2017 International Joint Conference
on Neural Networks (IJCNN), pp. 4400–4407, IEEE, 2017.

