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Abstract—The Coronavirus Disease 2019 (COVID-19) pan-
demic, caused by the novel coronavirus SARS-CoV-2, has led
to significant mortality and hospitalizations worldwide. Although
the spread of the pandemic has recently slowed, the persistence
of long-COVID remains a continuous public health concern. Sub-
stantial data have been amassed to delineate and synopsize the
fundamental symptoms of COVID-19, encompassing respiratory
distress, muscular discomfort, anosmia, limb paresthesia, and
fatigue. Notwithstanding the extensive investigations conducted
in this domain, a pivotal unresolved issue pertaining to the
pandemic is the considerable interindividual variability in the
severity of COVID-19 symptoms following SARS-CoV-2 infection.
Despite concerted research efforts, the precise biomarkers from
the human microbiome that underlie the cause of different
severity of COVID-19 symptoms remain elusive. This study aims
to develop a Machine Learning (ML) model for COVID-19
severity classification between asymptomatic and moderate and
to identify critical microbial biomarkers for COVID-19 severity
using previously published 16S rRNA gene sequencing data. The
employed Random Forest (RF) model has exhibited outstanding
performance with an accuracy of 0.82, an F1-score of 0.88 and an
AUC of 0.83. Our results show Selenomonas, Neisseria, Prevotella,
Veillonella and Rothia are critical microbial biomarkers related
to COVID-19 severity.

Index Terms—COVID-19, 16S rRNA gene sequencing, COVID-
19 Severity Classification, Asymptomatic, Moderate, Machine
Learning (ML), Random Forest (RF)

I. INTRODUCTION

The SARS-CoV-2 infection, commonly known as the coro-
navirus, and the resulting COVID-19 pandemic have emerged
as a global crisis impacting both public health and economics
across societies worldwide. According to the World Health
Organization (WHO), the symptoms of COVID-19 exhibit
variability. Individuals with mild cases generally manifest
symptoms such as fever, cough, and fatigue. Moderate-severity
cases may involve difficulty in breathing and mild pneumonia.
In contrast, severe cases may entail acute pneumonia, potential
organ failure, and, in some instances, a risk of mortality.
In particular, asymptomatic individuals may exhibit lower
infectiousness compared to symptomatic ones, but they still
constitute a significant portion of all SARS-CoV-2 infections.
Additionally, asymptomatic individuals tend to have more
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social contacts than symptomatic ones, as the latter are more
likely to self-isolate when feeling unwell. Finding out and
understanding asymptomatic infections is essential for early
prevention and control of COVID-19 worldwide [1]. Hence,
the contribution of asymptomatic cases to the community
transmission of COVID-19 should not be underestimated [2].

Previous research [3]–[9] has mainly concentrated on ex-
amining the presence, absence, or differential abundance of
particular microbes in COVID-19, while fewer studies have
employed ML to uncover the responsible biomarkers between
COVID-19-positive or negative [10], [11], severe or moderate
[12], [13], intubation or not [13]. However, research using ML
to uncover the microbial biomarkers linked to asymptomatic
cases of COVID-19 is conspicuously rare.

At the beginning of 2020, 831 adults without known SARS-
CoV-2 infection were followed weekly for six months to study
the occurrence and progression of SARS-CoV-2 infection [14].
A relative stability of the oral microbiome profile throughout
the duration of SARS-CoV-2 infection was reported, with mild
to moderate cases showing minimal alteration while severe
cases exhibiting notable early shifts. Nevertheless, the cause
of having asymptomatic or other symptomatic severity in
COVID-19 remains unclear. Further research specifically on
asymptomatic cases based on this published dataset is still
needed to elucidate the underlying causes and identify relevant
microbial biomarkers.

Addressing the gaps in the field and adding on values
to the previously published work [14], an ML model has
been employed in our work to classify between asymptomatic
or moderately symptomatic instances from SARS-CoV-2 ex-
posed individuals. 16s rRNA gene sequencing data was pre-
processed to obtain Amplicon Sequence Variants (ASV) fea-
tures for training the model. The optimal RF model was
identified by grid-search. Critical microbial biomarkers were
ranked by the optimal RF model to provide biological insights.

II. RELATED WORKS

Explainable artificial intelligence (XAI) methods were pro-
posed based on conventional ML using COVID-19 metage-
nomic next-generation sequencing (mNGS) data to classify
between COVID-19 negative and positive cohorts [10]. The
Extreme Gradient Boosting (XGBoost) model was reported



to outperform the Logistics Regression (LR), Support Vector
Machine (SVM), and RF models, with an accuracy of 0.93.
An explainable strategy that leverages the Local Interpretable
Model-agnostic Explanations (LIME) and the SHAPley Addi-
tive Explanations (SHAP) techniques was applied to identify
potential COVID-19 biomarker genes of the model. The SHAP
identified IFI27, LGR6, and FAM83A as the three most critical
genes responsible for COVID-19. According to the LIME, an
elevated level of IFI27 gene expression in particular increased
the likelihood of a positive class.

The RF model has been applied to discriminate between
COVID-19 patients who need intubation or not [13], as well
as those who have experienced severe symptoms or moderate
symptoms [12], [13]. Oropharyngeal (OP) and Nasopharyn-
geal (NP) samples were collected from COVID-19 samples,
integrating bacteria relative abundance data on genus level and
small circular DNA virus copy numbers. As a result, the ML
model exhibited an effective performance with an AUC of 0.86
using OP data for discriminating between intubation/none-
intubation patients, and an AUC of 0.82 using OP data for
discrimination moderately/severely diseased patients. More-
over, small circular DNA viruses of OP samples were reported
to contribute the most to distinguishing moderately/severely
diseased patients, Mycoplasma and Prevotella were found
to be positively responsible for intubation [13]. 241 stool
samples were collected from 127 hospitalized patients, and gut
microbiome taxonomic was profiled. The RF model exhibited
an excellent result with an AUC of 0.925 to distinguish
between severely and moderately diseased patients [12].

Machine learning has proven its effectiveness in identify-
ing patterns within vast, disorganized, and intricate datasets.
Nonetheless, constructing an accurate prediction model based
on genotype data presents a formidable challenge, primarily
due to the “curse of dimensionality” – wherein the number
of features far exceeds the number of samples [15]. Conse-
quently, the performance of ML models necessitates feature
selection. This process targets the extraction of informative
features while eliminating irrelevant and redundant ones. In
the pertinent domain, it is necessary not only to obtain a
precise ML model but also to interpret it to identify the critical
microbial biomarkers, i.e. the most illustrative features of the
issue. In such instances, although feature selection methods
such as Lasso [10], Principal component analysis (PCA) [16]
and differential abundance analysis [12] could lead to better
performance, they still pose challenges in identifying criti-
cal microbial biomarkers from trained classification models.
LASSO tends to arbitrarily select one feature from a group
of highly correlated features and shrink the coefficients of the
others [17], [18] in which way bias can be introduced into
the model interpretation. PCA transforms original features into
orthogonal variables, known as principal components, through
linear combinations. While these components preserve much
of the original information, interpreting them in the context
of the original features can be difficult, especially when they
lack clear semantic significance [19]. Differential abundance
analysis selects a certain number of features differentially

abundant features for training the model. However, it may
retain certain highly correlated features, causing data redun-
dancy. Moreover, features selected without the knowledge
of the model’s performance do not necessarily make them
important for training, hence it would be less convincing that
ranked features have a critical impact on the model’s decisions.

The field of biology has seen a surge in the adoption of
ML methods to handle the vast and intricate datasets prevalent
in the domain. Within Bioinformatics specifically, the RF
model has emerged as a favoured approach [10]–[13], [20].
Its interpretability and distinct strengths in handling small
sample sizes, and high-dimensional feature spaces, propelled
its increased utilization in computational biology research [21].
Addressing the identified issues of feature selection, we trained
an optimal RF model by grid-search using a comprehensive
range of correlation thresholds for feature selection, along with
a wide range of tree numbers. By doing so, features making the
RF model produce optimal results could be obtained, yielding
reliable model interpretation results.

III. METHODOLOGY

A. Overview

Fig. 1 shows the pipeline of our proposed method. In each
training process, the RF model is trained with a certain tree
number Tn, and a feature-selected dataset using a certain
correlation threshold Cn, the training process enumerates
using all possible combinations of Tn and Cn, namely the
parameter grid. The model’s performance is monitored by its
F1 Score, Tn and Cn which provide the highest F1 Score
will be noted to get the optimal model and the best-selected
dataset. With the optimal RF model and the best-selected
dataset, features will be ranked by feature importance scores.
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Fig. 1. Proposed Method



B. Dataset

In this study, we employed a publicly available dataset from
a study conducted by Armstrong et al. [14]. The data have been
obtained from the European Nucleotide Archive (ENA) under
accession number (PRJEB62655). A subset was subsequently
extracted from the initial dataset, comprising a total of 158
saliva samples subjected to 16S rRNA sequencing. Among
these, 47 samples were derived from asymptomatic individu-
als, serving as the negative samples, while the remaining 111
samples were sourced from individuals exhibiting moderate
symptoms, serving as the positive samples. It is pertinent to
note that all samples were collected subsequent to individuals
testing positive for COVID-19.

C. Data Pre-processing

We used QIIME2 [22] for data pre-processing. ASV features
were extracted from the sequence leveraging the DADA2
[23] package in QIIME2. ASV (Amplicon Sequence Variants)
features represent unique biological sequences present in the
sample derived from sequencing reads generated from PCR
(polymerase chain reaction) amplification of specific genomic
regions, such as the 16S rRNA gene for bacteria and archaea.
A pre-trained Naive Bayes classifier developed by SILVA [24]
was applied for taxonomic assignment. As a result, 14222
ASV features were identified from the domain level to the
species level. 6713 taxonomic labels on the genus level were
subsequently extracted from all the ASV features, they are
further grouped by summing the abundance values of taxons
on the same genus level, resulting in 203 features.

D. Feature Selection

Feature selection is a crucial step in ML and data analysis
tasks, aimed at identifying the most informative features
while discarding redundant or irrelevant ones. Correlation-
based feature selection is a commonly employed technique
that leverages the relationships between features to identify
and remove redundant ones. Our correlation-based feature
selection method is shown in Fig. 2 and the pipeline of
obtaining features to be dropped is shown in Fig. 3.

As Fig. 3 shows, Pearson Correlation coefficients Corrij are
calculated pairwisely among all the features from the original
dataset. By enumerating over all the Corrij , a list aimed
to store the indexes of features to be dropped appends the
second index j which appeared for the first time across the
enumeration. By doing so, the second index j of Corrij of
the pairs of the same feature (marked in green in Fig. 2) are
avoided from being added to the list across the enumeration,
and the second index j of Corrij which are larger than the
correlation threshold (marked in red in Fig. 2) are added in
the list, but without any repeating. Finally, features can be
selected by dropping the columns of the original dataset with
indexes stored in the list.

E. Machine Learning Model

The RF model was trained by 5-fold cross-validation for
binary classification. The optimal model was identified through
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Fig. 2. Feature Selection

a parameter grid-search encompassing tree numbers within
the RF model and correlation thresholds for feature selection.
Finally, the selected ASV features utilized for training were
ranked based on their feature importance scores obtained from
the optimal RF model to provide biological insights into
critical microbial biomarkers.

F. Model Evaluation

Precision, Recall, F1-score, Receiver Operating Character-
istic (ROC) Curve and Area under the ROC Curve (AUC)
were used to evaluate the optimal RF model identified by grid-
search.

IV. RESULTS AND DISCUSSION

A. Grid-search Results

The grid of parameters is formed with correlation thresholds
ranging from 0.1 to 0.96 with an interval of 0.02, and tree
numbers ranging from 50 to 510 with an interval of 20. The
RF model’s F1 Score is used to determine the best parameter
combination. Fig. 4 shows the grid-search result of the RF
model’s F1 Score under different correlation threshold-tree
number combinations. The data points are scaled to deliver
a discernible variation when being mapped in turbo colour.
Consequently, an optimal F1 Score of 0.88 was attained with
a correlation threshold set to 0.86 and a tree number set to
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Fig. 3. Pipeline of Getting Features to Drop

170. Under the correlation threshold set to 0.86, 99 features
out of 203 were selected.

Fig. 4. Grid-search Result

B. Evaluation

Fig. 5 shows the Confusion Matrix of the optimal RF model,
yielding a precision of 0.81, a recall of 0.96, an F1-score of
0.88 and an accuracy of 0.82. Fig. 6 shows the ROC Curve of
the optimal RF model, yielding a mean AUC across folds of
0.83. To assess the consistency of the model’s performance

Fig. 5. Confusion Matrix

Fig. 6. ROC Curve

across different folds and provide insights into the variability
of the dataset itself, Fig. 7 provides visualization of AUC
scores across each fold.

Fig. 7. AUC Scores Across Folds

C. Feature Ranking

Feature importance scores provided by the RF model rep-
resent a measure of the relative contribution of each feature
to the overall predictive accuracy of the model. These values
are derived from the extent to which each feature contributes
to the reduction in prediction error when making decisions
within the ensemble of decision trees that comprise the RF
model. Fig. 8 shows the importance scores of the top 10 ASV
features derived from the trained optimal RF model.



Fig. 8. ASV Feature Importance Scores (Top 10)

D. Relative Abundance of Top10 Features

To further discover the alternations of the top 10 features
ranked by the optimal RF model within the Asymptomatic
and Moderate cohorts, we have calculated the mean relative
abundance within both cohorts, as Fig. 9 shows.

Fig. 9. Mean Relative Abundance of the Top 10 ASV Features

E. Discussion

1) Model Performance: During the grid-search, the F1
Score remains relatively consistent across varying tree num-
bers. However, a notable increase is observed as the correlation
threshold is raised. The findings suggest that the feature
selection exerts a more pronounced influence on the perfor-
mance of the RF model. Given the circumstances pertaining
to the imbalanced nature of the dataset, the optimal RF model
demonstrated commendable performance in terms of AUC and
F1 Score, with a slight flaw in precision as we could anticipate.

The optimal RF model has shown consistency across 5
folds with a concentrated distribution of AUC scores (Fig.
7), suggesting that the model is robust and can generalize
well across folds, the features are informative as they have
consistent relationships with the target variable across subsets.
A concentrated distribution of AUC scores further underscores
the dataset likely contains a relatively homogenous set of

samples, as each fold contains similar characteristics of the
data, leading to consistent model performance.

2) Biological Insights: As Fig. 8 shows, several critical
microbial biomarkers were identified to play a significant role
in classification. Our discoveries have been corroborated by a
body of research. Prevotella, Veillonella and Rothia have been
reported to appear more frequently in samples of those who
used breathing assistive devices [8], [25], more specifically,
2 species of bacteria within the genus Prevotella and genus
Veillonella, i.e. the Prevotella histicola and the Veillonella
dispar have been reported to increase in the pharynges of
COVID-19 patient compared to non-COVID ones [26]. Simi-
larly, Selenomonas has been found to be enriched in patients
with COVID-19 but reduced in the healthy controls [27]. On
the other hand, Neisseria was found to decline with COVID-19
severity [13], [28]. The alternation of Selenomonas, Neisseria,
Prevotella, Veillonella and Rothia in our studied samples
(Fig. 9) is consistent with findings from above, underlying
that the microbiome alternation patterns of Asymptomatic to
Moderately symptomatic COVID-19 are similar to those of
Non-COVID to COVID-19 and mild to severe.

Rare cases have reported the relationship between COVID-
19 infection and Capnocytophaga and Parvimonas. Capnocy-
tophaga canimorsus bacteremia was revealed in a post-mortem
of a COVID-19 pneumonia patient. While Capnocytophaga
canimorsus infections are rare, they can lead to fulminant
septic shock, as observed in this case [29]. Cultures obtained
after bedside drainage of a COVID-19 patient grew Parvi-
monas Micra, underscoring a rare instance of Parvimonas
Micra-associated pleural empyema complicating COVID-19
pneumonia [30].

To our best knowledge, no previous studies have examined
the alternation of Treponema, Porphyromonas and Amnipila
in COVID-19 positive individuals or reported any relationship
between them and COVID-19 infection.

In summary, supported by adequate cohort studies, Se-
lenomonas, Neisseria, Prevotella, Veillonella and Rothia are
considered to be critical microbial biomarkers responsible for
causing asymptomatic or moderately symptomatic COVID-
19. Conversely, although Capnocytophaga and Parvimonas
are ranked as top features in the studied samples, occasional
cases reporting them in relation to COVID-19 do not constitute
compelling evidence to demonstrate their significance. Along
with Treponema, Porphyromonas and Amnipila which were
not studied in relation to COVID-19 infection, these microbial
biomarkers need to be further validated for their relationships
to COVID-19 infection in the future.

V. CONCLUSION AND FUTURE WORKS

This study developed a Machine Learning-based approach
using 16s rRNA gene data for classifying asymptomatic and
moderately symptomatic instances of COVID-19 patients. The
RF model achieved commendable performance in classifica-
tion and interpretation. Critical microbial biomarkers that align
with findings from existing studies have been identified.



Nevertheless, our work has certain limitations. The dataset
is notably of limited size and imbalanced, presenting a barrier
for the model to achieve better performance. Certain ranked
microbial biomarkers lacking support from other studies are
not convincing enough to exhibit their relationships to COVID-
19 infection. Although the RF model has been a favoured
solution in the industry and research field, the performance
of other ML models also warrants verification in this study
context. In the future, we will use multiple datasets to bench-
mark mainstream ML models across various tasks, focusing on
addressing imbalanced data categories. Currently, we solely
employ the abundance to train the model. There is still
potential for enhancement by enriching and integrating ad-
ditional features. In the future, diverse types of features could
potentially be derived and integrated. Models that comprehen-
sively assimilate information from various types of features
could be purposefully developed. Consequently, the outcomes
of model interpretation would also derive greater biological
relevance, offering insights that align more coherently with the
underlying biological context, which would potentially pave
the way for personalized medicine, predictive diagnostics, and
targeted treatments.
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